
2900 Spaf ford St ree t Davis CA 95616 USA Tel : +916.757.3737 Fax: +916.753.5141 www.zwor ld .com Revision: A

Introduction
Dynamic CTM is the development system by which you
develop software that runs on your Z-World controller.
Dynamic C incorporates an easy-to-use program editor,
fast C compiler, and source-level debugger. The C com-
piler has enhancements that support embedded systems
development.

Dynamic C runs in Windows (3.1, NT, or 95) on your
IBM-compatible PC and is designed specifically for
Z-World controllers and control products.

There are two versions of Dynamic C:

Standard Limited to 80K bytes of machine code.

Deluxe Not limited and fully supports extended
memory.

At this writing, Dynamic C is at revision 5.2.

Why C?
Using a programmable controller is the most flexible
way to develop a control system. C is the preferred language
for embedded systems programming. It is widely known and
produces efficient and compact code. Because it is a high-level
language, you can develop code much faster than you could
with assembly language, or some of the machine languages of-
fered by PLC manufacturers. Yet, C allows you to program at
the machine level whenever you want.

C is suitable for complex applications as well as simple ones. C
has floating point math with a substantial mathematical func-
tion library. C allows you to develop complex control algo-
rithms when you need to do so.

The Nature of Dynamic C
Dynamic C integrates the following development functions

Editing, Compiling, Linking, Loading, Debugging

into one program. In fact, compiling, linking and loading are
one function: Dynamic C compiles code directly to your target
controller (or to a file).

Dynamic C has an easy-to-use built-in text editor. Most Win-
dows users will immediately know what to do.

With the symbolic debugger, you can execute and debug pro-
grams interactively at the source-code level.

Ultimately, you’ll create EPROM files or down-loadable files
for programs that run stand-alone in the controller.

Because all the functions are integrated, (1) you can switch
from one function to another with a simple keystroke, (2) the

debugger has access to all the compiler information, and (3)
you can monitor your controller directly.

Dynamic C also supports assembly language programming.
You do not have to leave C or the development system to write
assembly language code. You can mix C and assembly lan-
guage, line by line, in your program.

Dynamic C has the following debugging windows:

STDIO (“standard I/O”) allows the program running in your con-
troller to print messages on your development screen.

Assembly Displays an assembly view of compiled code.

Watch Allows you to type and evaluate expressions, monitor or
set variables, and call functions at will.

Register Displays register contents and status bits.

Stack Displays the top 8 bytes of the processor stack.

Dynamic C’s debugger allows you to set and clear breakpoints
on-the-fly, to single-step with and without descent into func-
tions, and to view execution at the assembly level as well as at
the source-code level.

Dynamic C provides extensions to the C language (such as
shared and protected variables) that support real-world system
development. You can write interrupt service routines in C. Dy-
namic C supports real-time multi-tasking with its real-time ker-
nel and its costatement extension.

Dynamic C comes with many function libraries, all in source
code. These libraries support real-time programming, machine
level I/O, and provide standard string and math functions.

Dynamic C
TM

Integrated Development System

Dynamic C TM

Z-World 530-757-3737 2

Dynamic C compiles, links and loads in one pass—directly to
your target. On a fast PC, Dynamic C can compile more than
250 lines of source code per second. Thus, a large program—
say 8,000 lines of code—might generate 80K bytes of machine
code and take about 30 seconds to compile.

Dynamic C is Different
In an embedded system, there is no operating system or super-
visor that can halt a program if it goes wrong or perform ser-
vices for the program. An embedded program has to do it all,
and handle its own errors and keep on running. An embedded
program also has to initialize itself.

In an embedded system, a program usually runs from EPROM
(or flash) and uses a separate RAM for data storage.

Often, an embedded system comprises a number of concur-
rently executing tasks, rather than a single task.

Dynamic C specifically supports embedded systems.

Differences from ANSI C are summarized here and discussed
following this summary:

• The default storage class is static, not auto.
• There is no #include directive, nor are there any include

(header) files. There is a #use directive.

• Variables that are initialized when declared are considered
named constants and placed in ROM. It is an error to try to
change such “variables.”

• Dynamic C has a unique concept: function chaining.
• “Costatements” allow multiple concurrent tasks in a single

program.

• You can write interrupt service routines in C.

• Dynamic C has shared and protected keywords that help
protect your data from unexpected loss.

• Dynamic C has a set of features that allow you to make full-
est use of extended memory.

• The extern keyword has altered meaning. The register key-
word has altered meaning.

• Dynamic C has a subfunction extension that lets you opti-
mize frequently used code.

• Dynamic C does not support enumerated types.

• Dynamic C allows embedded assembly code.

Default Storage Class
Unlike traditional C compilers, the default storage class for lo-
cal variables is static, not auto.

Although this fact is disconcerting to many programmers at
first, static storage is preferrable in embedded systems.

Initialized Variables
Static variables initialized when they are declared are consid-
ered named constants. The compiler places them in the same
area of memory as program code: in EPROM or in flash
memory. Uninitialized variables are placed in RAM, and are
initialized by your application program.

References
Please refer to

• The C Programming Language by Kernighan and Ritchie,
published by Prentice-Hall.

• C: A Reference Manual by Harbison and Steel, also pub-
lished by Prentice-Hall.

• Z180 MPU User’s Manual

• Z180 Serial Communication Controllers

• Z80 Microprocessor Family User’s Manual

• Microsoft Windows User’s Manual.

Contents
Introduction ... 2

Dynamic C is Different 3

• How Dynamic C Differs

Z-World Controllers & Dynamic C 4

Usage ... 6

The Menus ... 8

The Language 10

C Language Elements 11

Using Assembly Language.................. 12

Interrupt Service Routines 13

Costatements 13

Remote Download 14

Run-Time Error Processing 14

Efficiency .. 15

New Features 15

Software Libraries 16

Dynamic C TM

Z-World 530-757-3737 3

Function Chaining
Function chaining, a concept unique to Dynamic C, allows you
to distribute special segments of code in one or more functions.
When a named function chain executes, all the segments be-
longing to that chain execute. Function chains allow your soft-
ware to “switch modes” momentarily to perform global initial-
ization, data recovery, or other kinds of tasks, at your request.

Dynamic C has two directives, #makechain and #funcchain,
and one keyword, segchain.

• #makechain chain_name

Create a function chain. When your program executes the
named function chain, all of the functions or chain segments
belonging to that chain execute.

• #funcchain chain_name name

Add a function (or another function chain) to a function
chain.

• segchain chain_name { statements }
Define a program segment (enclosed in curly braces) and at-
tach it to the named function chain. Function chain seg-
ments defined with segchain appear directly after data dec-
larations and before executable statements:
my_function(){
 data declarations
 segchain chain_x{
 some statements which execute under chain_x
 }
 segchain chain_y{
 some statements which execute under chain_y
 }
 function body which executes when my_function is called
}

Your program will call a function chain as it would an ordinary
void function that has no parameters. For example, if your
function chain is named recover, this is how to call it:

#makechain recover
...
recover();

Dynamic C software comes with several built-in function
chains, including _GLOBAL_INIT described next.

Global Initialization
Embedded systems typically have no operating system to per-
form services such as initialization of data. Further, various
hardware devices in a system need to be initialized not only by
setting variables and control registers, but often by complex
initialization procedures. For this purpose, Dynamic C has a
specific function chain: _GLOBAL_INIT .

You can perform any global initialization you want by adding
segments to the _GLOBAL_INIT function chain, as shown un-
der Function Chaining, above.

Have your program call _GLOBAL_INIT during program
startup, or upon hardware reset. This function chain executes
all _GLOBAL_INIT segments in your program (and in Dy-
namic C libraries as well).

Costatements
Dynamic C provides a capability whereby your program can
execute a set of tasks concurrently. A data structure, some addi-
tions to the C language, and some functions comprise what
Z-World calls costatements. A costatement is a construct—a
block of code—that can suspend its own execution, thereby al-
lowing other code to execute. A set of costatements execute,
presumably, in an endless loop. All of the tasks in the set are in
states of partial completion.

For further detail, refer to the section Costatements, later in this
document.

Interrupt Service Routines
You can write interrupt service routines in C. The keyword in-
terrupt designates an interrupt service routine:

interrupt my_handler(){
 ...
}

Shared and Protected Variables
You can declare variables protected. If your system resets
while a protected variable is being modified, the variable’s
value can be restored when the system restarts.

A system that shares data among different tasks or among in-
terrupt routines can find its shared data corrupted if an interrupt
occurs in the middle of a write to a multibyte variable (such as
type int or float). Declaring a multibyte variable shared en-
sures that any change to the variable is a complete change. (In-
terrupts are disabled while the variable is being changed.)

Extended Memory
Dynamic C supports the 1-megabyte physical address space of
the Z180 microprocessor. This is called extended memory since
the Z180 logical address space is 64K (16-bit addresses). Under
normal circumstances, Dynamic C takes care of memory man-
agement for you.

Dynamic C also has keywords (such as xdata and xstring),
functions (such as xgetstring), and directives (such as
#memmap) that help you manage code and data in the ex-
tended memory space. See Physical Memory.

External Functions and Data
The keyword static cannot apply to functions. The meaning of
the keyword extern is this:

• A variable or function is declared extern if it is defined in
your target controller’s BIOS.

• Declare a variable extern if it is to be defined later in the
program or in another file.

Dynamic C has no #include directive, but does have a #use di-
rective. Z-World’s #use directive identifies a library from which
functions and data may be taken. The file LIB.DIR contains the
names of all known libraries. The file DEFAULT.H contains sev-
eral sets of #use directives, one set for each controller Z-World
offers. You may modify either of these files.

Dynamic C TM

Z-World 530-757-3737 4

Dynamic C functions are not compiled separately and then
linked. There are no precompiled software libraries. Dynamic
C uses source-code libraries, from which necessary functions
are extracted during compilation.

Dynamic C libraries make global variables and function proto-
types available with special headers like this one:

/*** BeginHeader my_proc, my_func, my_var */
 void my_proc(int j);
 float my_func(float arg);
 extern int my_var;
/*** EndHeader */

If you create libraries, you must (1) create such headers to
make your functions known to the Dynamic C compiler and (2)
add the name of your library to LIB.DIR.

Subfunctions
Subfunctions allow often-used code sequences to be turned into
a local “subroutine” within a C function. For more detail, see
Efficiency later in this document.

Z-World Controllers and Dynamic C
Z-World controllers are based on the Z180 microprocessor. The
Z180 is a well-established and popular microprocessor. A de-
scendent of the original Z80 microprocessor, the Z180 also has
the following on-chip subsystems:

• Dual 16-bit programmable timers

• Dual asynchronous serial communication ports

• A clocked serial communication port

• Dual DMA channels for high-speed data transfer between
memory and I/O devices.

Many Z-World controllers use a Zilog PIO, SCC or KIO chip for
additional I/O capability.

Physical Memory
Although Z-World controllers can address up to 512K bytes of
ROM (or 256K flash), and 512K bytes of RAM, it is often not
necessary to have memory chips this large on controllers. Typi-
cal memory chips have 32K or 128K bytes.

Code and constants are placed in ROM (or flash). Variable data
(including the system stack) are placed in RAM.

ROM addresses start at 0. RAM always starts at a fixed address
(usually 512K, or 80000H).

Memory Management
Z180 instructions can specify 16-bit addresses, giving a logical
address space of 64K (65,536) bytes. Dynamic C supports a
1-megabyte physical address space (20-bit addresses). An on-
chip memory management unit (MMU) translates 16-bit Z180
addresses to 20-bit memory addresses. Three MMU registers
(CBAR, CBR, and BBR) divide the logical space into three sec-
tions and map each section onto physical memory.

The following diagram illustrates the memory management
registers and address mapping.

4000

C000

Logical Space Physical Space

FFFF

0000

XMEM

ROOT

BIOS

CBAR
Com Bank

00000

FFFFF

CBR

BBR

CBAR

CBR

BBR

Common/Bank Area Register

Common Base Register

Bank Base Register

2000

6000

8000

A000

E000

BIOS

The logical address space is partitioned on 4 kbyte boundaries.
The upper half of the CBAR identifies the boundary between
ROOT memory and XMEM . The lower half of CBAR identifies
the boundary between the BIOS and ROOT. The start of the
BIOS is always address 0. The two base registers CBR and BBR
map XMEM and ROOT, respectively, onto physical memory.

XMEM is a small window into physical memory. Its mapping
will vary. The ROOT is a larger window into physical memory,
but its mapping does not vary. The BIOS mapping is always
fixed at address 0.)

Given a 16-bit address, the Z180 determines, using the CBAR,
whether the address is in XMEM, BIOS, or ROOT. If the address
is in XMEM, the Z180 uses the CBR as the base to calculate the
physical address. If the address is in ROOT, the Z180 uses the
BBR. If the address is in the BIOS, the Z180 uses a base of 0.

logical address

15 12 11 0

+
base

physical address

19 0

A physical address is, essentially,

(base << 12) + logical address

The Memory Partitions
The meaning of the partitions is this:
Name Size Description

BIOS 8K Basic Input/Output System, containing the power-up
code, the communication kernel, and important sys-
tem features.

ROOT 48K The area between the BIOS and XMEM (the bank
area). The root—“normal” memory—resides in a
fixed portion of physical memory. Root code grows
upward in logical space from address 2000 (hex) and
root data grow down from E000.

XMEM 8K XMEM is an 8K “window” into extended physical
memory. XMEM can map to any part of physical
memory simply by changing the CBR.

Dynamic C TM

Z-World 530-757-3737 5

Functions may be classified as to where Dynamic C is allowed
to load them:
Key Description

root The function is to be placed in root memory. It can call
functions residing in extended memory.

xmem The function is to be placed in extended memory.

anymem This keyword lets the compiler decide where to place the
function. A function’s placement depends on the amount
of reserve memory available.

Dynamic C memory management is automatic. You can control
how Dynamic C allocates and maps memory with the com-
mands of OPTIONS menu.

Watchdog Timer
Most Z-World controllers have a “watchdog” timer that will ini-
tiate a hardware reset unless your program signals the timer pe-
riodically (about once a second). A failed program will gener-
ally fail to “hit” the watchdog timer. The watchdog timer pro-
vides a natural way to perform fatal error recovery.

Real-Time and Multi-Tasking Operations
Dynamic C includes two real-time function libraries to support
real-time multi-tasking operations. The costatement extension
supports cooperative multi-tasking.

Restart (Reset) Conditions
Z-World embedded applications need to differentiate the causes
of reset. Hardware resets are listed as follows:

Regular reset The system /RESET line is pulled low and re-
leased.

Power failure reset Power drops below a threshold, and the super-
visor chip pulls /RESET low and causes a reset.

Watchdog reset The watchdog timer was not resest. It pulls /
RESET low and causes a reset.

In addition to these hardware resets, an application may cause a
super reset. Z-World’s super reset is a mechanism to initialize
certain persistent data in battery-backed RAM. A normal reset
does not initialize these data, but retains their values. A super
reset always occurs when a program is first loaded. Subsequent
resets are normal resets, unless your software performs a super
reset intentionally.

Reset Differentiation
Dynamic C include a set of functions to differentiate the vari-
ous resets. These functions are grouped into two categories.

1 The function names begin with underbar (_), have important
side effects, and may only be called once and only once at
the beginning of your main program.
int _sysIsSuperReset()
int _sysIsPwrFail()
int _sysIsWDTO()

2 The function names do not begin with underbar, have no
side effects, and may be called anywhere in your program.
int sysIsSuperReset()
int sysIsPwrFail()
int sysIsWDTO()

The _sysIsSuperReset function returns 1 if a super reset was
requested and 0 if not. If a super reset was requested, this func-
tion calls _prot_init which initializes the protected variable
feature. In addition, it calls the function chain
sysSupRstChain. You may add any code you like to this func-
tion chain. If a super reset was not requested, this function calls
_prot_recover which recovers partially written protected vari-
ables (if there are any).

The _sysIsPwrFail function returns 1 if a power failure oc-
curred and 0 otherwise. You cannot use a custom power-failure
handler with this function.

The _sysIsWDTO function returns 1 of a watchdog timeout
occurred and 0 otherwise.

Reset Generation
Your software can generate two types of system reset. The
function sysForceReset causes a watchdog reset. The function
sysForceSupRst causes a super reset.

Instruction Timing
The Z180 has a relatively efficient instruction set. At 9.216
MHz, many instructions take about 1 microsecond. Floating
point arithmetic is accomplished in software. Refer to the table
following. Times are given in microseconds.

Arithmetic
Times required to perform basic mathematical operations.
Operation 6.144 9.216 12.288 18.432

16 bit integer add 4.2 2.8 2.1 1.4
16 bit integer multiply 14.7 9.8 7.4 4.7
16 bit integer divide 142.2 94.8 71.1 47.4
Long (32-bit) integer add 31.7 21.1 15.8 10.6
Long integer multiply 129.9 86.6 65.0 43.3
Long integer divide 605.3 403.5 302.6 201.8
Floating point (32-bit) 104.4 69.6 52.2 34.8
add or subtract
Floating point multiply 174 116.0 87.0 58.0
Floating point divide 416.6 277.7 208.3 138.9
Sine or cosine 4672.8 3115.2 2336.4 1557.6
Square root 1277.3 851.5 638.6 425.8

Logical Decision Making
Execution times of various logical and counting operations are
shown in the list below. Times are given in microseconds for a
9.216 MHz clock.

if(k)... 2.6 µs

for(k=0;k<100;k++){...} loop overhead 12.8 µs

func(n); call overhead with 1 integer
argument 5.8 µs

switch(n){...} 22 µs for first case, 7 µs for
each additional

costate{...} costatement entry and exit
overhead 32 µs

waitfor(...) 19 µs

Dynamic C TM

Z-World 530-757-3737 6

Other Operations
Interrupt latency (guaranteed response to an interrupt) less than
100 µs. Sustained data throughput, interrupt driven at least
20,000 bytes per second. Burst data transfer rate using DMA at
least 500,000 bytes per second.

Usage
Writing Programs
You’ll be using one or more Dynamic C text windows to enter
program text. You’ll use the same editing techniques as you
would in other Windows applications.

You’ll create (1) programs and/or (2) function libraries.

Compiling Programs
Dynamic C gives you several ways to compile programs:

Compile to Target

Dynamic C compiles directly to your target controller. If
your controller has flash memory, Dynamic C places code in
flash memory. If your controller has EPROM, Dynamic C
places code in RAM. Dynamic C communicates with your
controller through a PC serial port. If your compilation is
successful, Dynamic C enters run mode and maintains com-
munication with your target.

Compile to File
Dynamic C compiles your program to a file whose nature
and format can be selected with compiler options. Compile-
to-File takes target information from your controller you
have connected to your PC.

Compile to File with RTI File

Dynamic C compiles a program to a file without having a
target controller present. If you wish to compile programs in
this way, you must first create a Remote Target Information
(.RTI) file for the specific controller in which the program
will run.

Compiler Options

Code with BIOS Generates an EPROM file containing your program
and the BIOS of the target controller. Optionally
generates an Intel hex format file in addition.

Null device Generates no output. Useful if you just want to
(1) perform syntax checking or type checking or
(2) get the sizes of each code and data segment.

DLP for Generates a downloadable program file to be
download used by the Z-World download manager. Refer to

the section Remote Download for detail.

Debugging Programs
Once you sucessfully compile a program to a connected target
controller, Dynamic C enters run mode, or debug mode. There
are two general debugging methods.

1 Make calls to printf . Dynamic C has an option to save all
contents printed to the STDIO window in a file.

2 Probe and test the program, as it runs. Use breakpoints,
single-stepping, watch expressions and the various debug

windows. Dynamic C provides a variety of windows to
monitor your program’s state:

watch window examine variables, evaluate expressions,
and call functions

STDIO window calls to printf use the STDIO window

assembly window examine, or step, (dis)assembled code

register window the Z180 register values, past and present

stack window shows the top of the processor stack.

You can scroll the assembly, register, stack, STDIO, and watch
windows to view the history of your program.

The Dynamic C debugger is symbolic. (1) Your executing pro-
gram is linked to source code. The part of your program that is
executing is highlighted in the source code window. (2) When
you evaluate expressions, variables, and functions, it is in C
language, using the names in your application, and normal inte-
ger, floating, and character representations of constants. (You
can view your program at the machine level if you want to.)

Single Stepping
There are two commands for single stepping:

• Trace into allows descent into function calls

• Step over prevents descent into function calls

When you issue one of the single-stepping commands, the cur-
rent statement executes, debugging windows are updated, and
the execution cursor is advanced to the next statement in the
execution sequence.

Breakpoints
At times, you will want to run your program at full speed and
then stop at breakpoints. You can place them (and remove
them) anywhere in your source code, at run-time.

There are hard and soft breakpoints. Interrupts are disabled at
hard breakpoints. Interrupts are restored to their former state
upon resumption of execution after a hard breakpoint. Soft
breakpoints do not affect interrupt state.

Watch Expressions
To obtain the value of a variable, to evaluate an arbitrary ex-
pression, or to call a function out of sequence, select ‘Add/De-
lete Watch Expressions’ from the INSPECT menu. Enter an ex-
pression for evaluation. The result appears in the watch win-
dow. There are two ways:

1 Immediate Evaluation. Enter an expression and click
“Evaluate.” The expression is evaluated once.

2 Repeated Evaluation. Enter an expression and click “Add to
top.” The expression will be added to the top of the watch
list. All the entries in the watch list are evaluated every time
your program comes to a stopping place.

Being able to evaluate expressions and function calls both peri-
odically and at will is a very powerful facility. You can change
your program state as well as monitor it. For instance, you
might reset the PLCBus, or simulate real-world events by
changing the values if inputs and outputs.

Dynamic C TM

Z-World 530-757-3737 7

Creating Stand-Alone Programs
The object of building a program in Dynamic C is to create
stand-alone programs. Thus,

For a controller with EPROM

Once you have burned an EPROM, you may place it in the
EPROM socket of your controller. When your controller re-
sets, your program will start running.

For a controller with flash memory

When you compile to a controller with flash memory, Dy-
namic C places your program code in flash. Therefore, your
program is non-volatile. When your controller restarts in run
mode, your program will start running.

For a controller with a program in RAM

When you compile to a controller that has EPROM, Dynamic
C places your program in RAM. As long as your controller’s
RAM continues to get power, you can disconnect from Dy-
namic C, and restart your controller in run mode, and your
program will start running.

Help
Dynamic C provides three forms of on-line help.

Standard Windows Help

The first form provides descriptions of the available menus,
keystrokes, and dialog box options, as well as other infor-
mation about using Dynamic C.

Function Lookup

The second form of on-line help provides information about
the use Dynamic C library functions. All library functions
have descriptive headers which are made known to Dynamic
C at startup. When you request help regarding the function,
this function header is displayed.

By clicking “Lib Entries,” you can browse all library func-
tions known to Dynamic C.

Function Assistance

The third form of help is variant of function “lookup.” By
clicking the ‘Insert Call’ button, the function assistant will
help you place function calls in your program.

The Menus
Dynamic C has eight command menus

FILE EDIT COMPILE RUN
INSPECT OPTIONS WINDOW HELP

as well as the standard Windows system menus. These are de-
scribed next.

File Menu
New Creates a new program in a new window.

Open Presents a dialog in which to specify the name of
a file to open.

Save Updates the file to reflect your latest changes.

Save As Allows you to enter a new name for your file and
saves it under the new name.

Close Closes the active window.

Print Preview... Shows what your printed text will look like.

Print... Print text from any Dynamic C window.

Print Setup... Allows you to choose which of your printers to
use and to set it up for printing your text.

Exit Exit Dynamic C.

Edit Menu
Undo Undoes recent changes in the active edit window.

You may undo multiple changes.

Redo Redoes modifications recently undone.

Cut Remove selected text from a source file. An image
of the text is saved on the “clipboard.”

Dynamic C TM

Z-World 530-757-3737 8

Edit Menu, continued
Copy Make a copy of selected text in a file or in one of

the debugging windows. An image of the text is
saved on the “clipboard.”

Paste Pastes the text on the “clipboard” (the result of a
copy or cut in Dynamic C or some other Windows
application) at the current insertion point or in
place of selected text.

Find... Finds specified text.

Replace... Replaces specified text.

Find Next Once you have specified search text with the
‘Find’ or ‘Replace’ command, the ‘Find next’
command will find the next occurrence of the
same text as you previously specified. If your pre-
vious command was Replace, the operation will
be a replace.

Goto... Positions the insertion point at start of the line you
specify.

Previous Error Locates the previous compilation error in the
source code.

Next Error Locates the next compilation error in the source
code.

Edit Mode Switches Dynamic C back to edit mode.

Compile Menu
Compilation is affected by compiler options, memory options,
and serial options (under the OPTIONS menu).
Compile to Target Compiles your program, loading it in your target

controller’s memory.

Compile to File Compiles your program to a file. Dynamic C takes
configuration information from your target con-
troller.

Create *.RTI File... Create a Remote Target Information (RTI) file for
your intended controller.

Compile to File Compiles your program to a file using an RTI file
with *.RTI File you created.

Run Menu
Run Starts program execution from the current

breakpoint. Registers are restored, including inter-
rupt status.

Run w/ no This command is identical to the run command
polling with an important exception. When running in

polling mode, Dynamic C polls or interrupts the
target system every 100 milliseconds.

Stop Places a hard breakpoint at the point of current
program execution.

Reset Program Resets your program to its initial state.

Trace into Executes one C statement (or one assembly lan-
guage instruction) with descent into functions.

Step over Executes one C statement (or one assembly lan-
guage instruction) without descending into func-
tions.

Toggle Toggles a “soft” breakpoint at the location of
Breakpoint the text cursor. Soft breakpoints do not affect the

interrupt state; hard breakpoints do.

Toggle Hard Toggles a “hard” breakpoint at the location of
Breakpoint the text cursor. A hard breakpoint disables inter-

rupts when it is reached.

Toggle Toggles interrupt state (enabled or disabled).
Interrupt Flag

Toggle Polling Toggles polling mode. Normally, Dynamic C polls
or interrupts the target controller every 100 milli-
seconds.

Reset Target Tells the target system to perform a software reset
including system initializations.

Inspect Menu
The INSPECT menu provides commands to manipulate watch
expressions, view disassembled code, and produce memory
dumps.
Add/Del Watch Allows you to enter expressions to be evalu-
Expression ated. You can either evaluate this expression im-

mediately by clicking the ‘Evaluate’ button or you
may add it to the watch list by clicking the ‘Add
to top’ button. Expressions in this list are evalu-
ated, with results displayed in the watch window
every time the watch window is updated.

Clear Watch Removes all entries from the watch window.
Window

Update Watch Forces the watch expression list to be dis-
Window played in the watch window.

Disassemble Disassembles the code at the current editor
at Cursor cursor.

Disassemble Disassembles the code at the specified address.
at Address

Dump at Allows you to look at blocks of raw memory
Address values. You can display values on your screen, or

write values to a file.

Options Menu
Editor Options (1) Change default tab stops (2) Auto-Indent or (3)

Remove Trailing Whitespace.

Compiler Warning Reports. Tells the compiler whether to
Options report all warnings, no warnings or serious warn-

ings only.

Run-Time Checking. Check array bounds, invalid
pointer assignments, and stack corruption.

Optimize For. For size or for speed.

Type Checking. Perform strict type checking and
detect demotion. Generate warnings if pointers to
different types are intermixed without type cast-
ing.

File Type for “Compile to File.” Se previous re-
marks.

Object File Option. Dynamic C can optionally
generate an Intel HEX format file.

Debugger (1) Log printf statements and other STDIO
Options output to a file, and (2) specify whether to open

the STDIO window automatically.

Memory Specifies memory settings.

Physical. The size and boundaries of RAM and
ROM, or the format of a hex file.

Logical. Specifies (1) the number of bytes allo-
cated for the run-time stack, (2) the number of
bytes allocated to an alternate stack used mainly
for stack verification, (3) the heap size, and (4) the
size of free space.

Reserve. Root reserve and XMEM reserve specify
how the compiler allocates memory when compil-
ing code whose destination is not specified (that
is, anymem code).

Dynamic C TM

Z-World 530-757-3737 9

Options Menu, continued
Display Specifies the appearance of Dynamic C windows,

such as foreground and background colors, high-
light colors, and font (type face).

Serial Tells Dynamic C how to communicate with your
target controller.

Show Tool Bar Toggles the tool bar on or off.

Save Saves your current options settings.
Environment

Window Menu
Cascade Displays your windows neatly overlayed and in

order. The window in which you are working is
displayed in front of the rest.

Tile Horizontally When you issue this command, Dynamic C dis-
plays your windows in horizontal (landscape) ori-
entation.

Tile Vertically When you issue this command, Dynamic C dis-
plays your windows in vertical (portrait) orienta-
tion:

Arrange Icons When you have minimized one or more of your
Dynamic C windows, they are displayed as icons.
This command arranges icons neatly.

Message Activates or deactivates the message window.

Watch Activates or deactivates the watch window.

STDIO Activates or deactivates the STDIO window.

Assembly Activates or deactivates the assembly window.

Registers Activates or deactivates the register window.

Stack Activates or deactivates the stack window.

Information Activates the information window: The informa-
tion window tells you how your memory is parti-
tioned and how well your compilation wentand
how much space has been allocated to the heap or
free space.

Help Menu
Contents Invokes the on-line help contents page.

Keystrokes Displays information on available keyboard short-
cuts and their functions.

Search for Displays help information for various topics.
Help on

Library Help Obtains help information for library functions.
Lookup You may display a list of the library functions cur-

rently available to your program. You may then
select a function name from the list to receive in-
formation about that function.

If you click the ‘Insert Call’ button, the dialog
turns into a “function assistant.” You will probably
need the function help dialog only when you are
unfamiliar with or unsure of a function.

About Displays version number and copyright notice.

The Language
Modules
How does Dynamic C know which functions and global vari-
ables in a library to use? A library file contains a group of mod-
ules. A module has three parts: the key, the header, and a body
of code (functions and data).

A module in a library has a structure like this one:
/*** BeginHeader func1, var2, */
 prototype for func1
 declaration for var2
/*** EndHeader */

definition of func1 var2 and possibly other functions and data

The line (a specially-formatted comment)
/*** BeginHeader name1, name2, */

begins the header of a module and contains its key, a list of
names of functions and data available for reference.

When Dynamic C sees a #use directive, it compiles every
header, and just the headers, in the function library.

Every line of code after the EndHeader comment belongs to
the body of the module until (1) end-of-file or (2) the
BeginHeader comment of another module. Dynamic C com-
piles the entire body of a module if any of the names in the key
are used anywhere in your application.

Macros
Dynamic C supports ANSI parameterized macro expansion.
Dynamic C implements the # and ## macro operators also.
Macros are restricted to 32 parameters and 126 nested calls.

Data
Data (variables and constants) have type, size, structure, and
storage class. Primitive data types are as follows:
Type Description

char 8-bit unsigned integer. Range: 0 to 255 (0xFF)

int 16-bit signed integer. Range: –32,768 to +32,767

unsigned int 16-bit unsigned integer. Range: 0 to 65,535

long 32-bit signed integer. Range: –2,147,483,648 to
+2,147,483,647

unsigned long 32-bit unsigned integer. Range: 0 to 232 –1

float 32-bit IEEE floating point value. The sign bit is 1
for negative values. The exponent has 8 bits, giving
exponents from –127 to +128. The mantissa has 24
bits. Only the 23 least significant bits are stored;
the high bit is implicitly 1. (Z180s do not have
floating point hardware.)

Range: –6.085 x 1038 to +6.085 x 1038

The structures of the primitive data types are shown in relative
size in the following figure:

char

int

unsigned int

long int

unsigned long int

floats exp+127 mantissa 1.0... to 1.99...

s

s

C has string constants and string storage, but not a string data
type. There are many functions to manipulate strings.

Dynamic C TM

Z-World 530-757-3737 10

Storage Classes
Local variable storage can be static, auto, or register. If a vari-
able does not belong to a function, it is called global—avail-
able anywhere. Global variables are always static.

The term static means the data occupies a permanent fixed lo-
cation for the life of the program. The term auto refers to vari-
ables that are placed on the system stack for the life of a func-
tion call.

The term register describes variables that are allocated as if
they were static variables, but their values are saved on func-
tion entry and restored when the function returns. Thus, regis-
ter variables can be used with reentrant functions as can auto
variables, yet they have the speed of static variables.

Argument Passing
In C, function arguments are generally passed by value. That is,
arguments passed to a C function are generally copies—on the
program stack—of the variables or expressions specified by the
caller. Changes made to these copies do not affect the original
values in the calling program.

In Dynamic C and most other C compilers, however, arrays are
always passed by address. This policy includes strings (which
are character arrays).

Dynamic C passes structs by value—on the stack. Passing
large struct takes a long time and can easily cause your pro-
gram to run out of memory. Pass pointers to large structs if
you are having problems.

If you want a function to modify the original value of a param-
eter, (1) pass the address of the parameter and (2) design the
function to accept the address of the item.

C Language Elements
A Dynamic C application program is a set of files, each of
which is a stream of characters which compose statements in
the C language. The basic elements of the C language include:

keywords words used as instructions to Dynamic C

names words used to name your functions and data

numbers literal numeric values

strings literal character values enclosed in quotes

operators symbols used to perform arithmetic

punctuation symbols used to mark beginnings and endings

directives words starting with # that control compilation

The following material presents Dynamic C’s few differences
from standard C.

Keywords
The following Dynamic C keywords are not in ANSI C:

abort Jump out of, and terminate, a costatement.

anymem Allow the compiler to determine in which part of
memory a function will be placed.

costate Indicates the beginning of a costatement.

debug A function is to be compiled in debug mode.

firsttime A function is to be a waitfor delay function.

interrupt A function is an interrupt service routine.

nodebug A function is not compiled in debug mode.
norst A function does not use RST for breakpoints.

nouseix A function uses SP as a stack frame pointer.

NULL The null pointer. (This is actually a macro.)

pop A keyword used in conjunction with directives
#memmap and #class.

protected Declares a variable to be “protected” against system
failure.

push A keyword used in conjunction with directives
#memmap and #class.

ret Indicates that an interrupt service routine written in C
uses the ret instruction.

reti Indicates that an interrupt service routine written in C
uses the reti instruction.

retn Indicates that an interrupt service routine written in C
uses the retn instruction.

root Indicates a function is to be placed in root memory.

segchain Identify the beginning of a function chain segment
(within a function).

shared Indicates that changes to a multi-byte variable (such as
a float) are atomic.

size Declares a function to be optimized for size.

speed Declares a function to be optimized for speed.

subfunc Begins the definition of a subfunction.

useix A function uses IX as a stack frame pointer.

waitfor Waits for a condition, completion of an event, or a de-
lay, in a costatement.

xdata Declares a block of data in extended memory.

xmem Indicates that a function is to be placed in extended
memory.

xmemok Indicates that assembly code embedded in a C function
can be compiled to extended memory.

xstring Declares strings in extended memory.

yield Pauses a costatement temporarily, allowing other
costatements to execute.

Names
Names are distinct up to 16 chars, but may be longer.

Strings
Dynamic C treats strings the same way standard C does. Char-
acter constants, however, are limited to a single byte.

Directives
Dynamic C has several directives not found in ANSI C:

• #asm [options...]
#endasm
Begin and end blocks of assembly code.

• #class [push] [options...]
#class pop
Control the default storage class for local variables.

• #debug
#nodebug
Enable or disable debug-code compilation.

Dynamic C TM

Z-World 530-757-3737 11

• #fatal "..."
#error "..."
#warns "..."
#warnt "..."
Instructs the compiler to act as if a fatal error (#fatal), an er-
ror (#error), a serious warning (#warns) or a trivial warning
(#warnt) were issued.

• #funcchain chain_name name

Add a function, or another function chain, to a function
chain.

• #interleave
#nointerleave
Controls whether Dynamic C will intersperse library func-
tions with your program’s functions during compilation.
#nointerleave forces your functions to be compiled first.

• #int_vec [const] function

Loads the address of function in the interrupt vector table at
an offset equal to const.

• #KILL name

If you wish to redefine a symbol found in the BIOS of your
controller, you must first “kill” the prior name.

• #makechain chain_name

Create a function chain.

• #memmap [push] [options...]
#memmap pop
Control the default memory area for functions.

• #use pathname

Activates a library (named in LIB.DIR) so modules in the li-
brary can be linked with your application program.

• #useix
#nouseix
Control whether functions use the IX register as a stack
frame reference pointer or the SP (stack pointer) register.

Using Assembly Language
To place assembly code in your program, use the #asm and
#endasm directives.

You can place a C statement within assembly code by placing a
‘C’ in column 1. You can use C variable names in Dynamic C
assembly language.

Register Summary
The Z180 has the following basic register set.

I R

SP (stack pointer)

IX (index)

IY (index)

General
Registers

A F

B C

D E

H L

Alternate
Registers

A' F'

B' C'

D' E'

H' L'

Special
Registers

PC (program counter)

Register A is the accumulator. Registers B–L are general pur-
pose registers and can be coupled in pairs BC, DE, HL for 16-bit
values. Registers B, C, D, and E may also be coupled (and
called BCDE) for 32-bit values.

Register F (flags) holds status bits:

Flags

S Z H P/V N C

7 6 5 4 3 2 1 0

S: sign bit Z: zero bit
H: half-carry P/V: parity or overflow
N: negative op C: carry

The alternate set of registers (A'–L') is often used to save and
restore register values. There are instructions to swap register
sets.

The PC is the program counter; SP is the stack pointer. The IX
and IY registers are index registers. The I register is the inter-
rupt vector register. (You can ignore the R register.)

Dynamic C uses the HL register pair (1) to pass the first 16-bit
argument, and (2) to return a 16-bit function result. Dynamic C
uses the BCDE register group (1) to pass the first 32-bit argu-
ment and (2) to return a 32-bit function result.

The Z180 has many other special-purpose registers. So also do
the Zilog PIO, SCC, and KIO chips.

Interrupt Service Routines
Dynamic C allows you to write interrupt service routines in C,
although assembly routines tend to be more efficient than the C
equivalent functions.

In general, an interrupt routine written in C saves and restores
all registers. It disables interrupts on entry and reenables inter-
rupts on exit. Interrupt routines cannot have parameters and
must be void (they cannot have “function results”).

Interrrupt Vectors
Interrupt vectors are of two types. The first type handles modes
0, 1 and non-maskable interrupts. This type includes:

08h: jp restart_service ; mode 0 int
38h: jp interrupt0_service ; mode 1 int
66h: jp nmi_service ; non-maskable

The second type handles the mode 2 interrupt used by Z180 pe-
ripheral devices, Z180 internal I/O devices and Dynamic C. This
involves a 256-byte table, identified by the I register, that can
contain addresses of up to 128 interrupt service routines.

To set interrupt vectors in the page specified by the I register,
use the following preprocessor directive:

#INT_VEC (const_expr) function_name

The constant expression is the offset, in bytes, of the interrupt
vector, which is always an even number from 0 to 126. The
function name is the name of the interrupt routine.

Dynamic C common interrupt vectors are given in the table fol-
lowing. Some Z-World controllers use additional vectors.

Dynamic C TM

Z-World 530-757-3737 12

Standard Vectors
Addr Name Description

0x00 INT1_VEC INT1, expansion bus attention.
0x02 INT2_VEC INT2 vector.
0x04 PRT0_VEC Programmable timer channel 0
0x06 PRT1_VEC Programmable timer channel 1
0x08 DMA0_VEC DMA channel 0
0x0A DMA1_VEC DMA channel 1
0x0C CSIO_VEC Clocked serial I/O
0x0E SER0_VEC Asynchronous Serial Channel 0
0x10 SER1_VEC Asynchronous Serial Channel 1

Interrupt Priorities, Highest to Lowest
Trap (Illegal Instruction)

NMI (non maskable interrupt)

INT 0 (Maskable interrupts, level 0. Three modes)

INT 1 (Maskable interrupts, level 1. PLCBus attention line)

INT 2 (Maskable interrupts, level 2)

PRT channel 0

PRT channel 1

DMA channel 0

DMA channel 1

Clocked serial I/O

Serial Port 0

Serial Port 1

Costatements
Dynamic C supports multi-threaded real-time programming.
You may use one of the real-time kernels or you may use
costatements. Costatements give you cooperative multi-tasking
within your application.

The advantages are several:

• Costatements are a feature built into the language.
• Costatements are cooperative instead of preemptive.
• Costatements operate within a single program.

Costatements are blocks of code that can suspend their own ex-
ecution at various times for various reasons, allowing other
costatements or other program code to execute. Costatements
operate concurrently. For example, the code shown here will
operate as shown in the diagram: 3 processes, a, b, and c, oper-
ate independently and concurrently.

main(){
 int x, y, z;
 ...
 for(;;){
 costate a {
 ...
 }
 costate b {
 ...
 }
 costate c {
 ...
 }
 }
}

It is only when you have more than one task that they can be
considered cooperative, because it is only when you have more
than one task that any task can execute in the idle time of an-
other task. Nevertheless, some single tasks are easier to write

using costatements. Costatements can be used, for instance, to
create delays.

A typical set of costatements will execute in an endless loop.
This is not a requirement, however.

Costatements are cooperative because they can suspend their
own operation. There are three ways they do this.

1 Wait for an event, or a condition, or the passage of a certain
amount of time. For this, there is the waitfor statement.

2 Use a yield statement to yield temporarily to other
costatements.

3 Use an abort statement to cancel their own operation.

Since costatements can suspend their own execution, they can
also resume their own execution. Placing costatements in a
loop is the simplest way for you to give each costatement a
chance to progress in its turn.

Costatements can be active (ON) or inactive (OFF). You may
declare a costatement “always on,” “initially on,” or “initially
off. A costatement that is initially on will execute once and
then become inactive. A costatement that is initially off will not
execute until it is started by some other part of your program.
Then it will execute once and become inactive again.

Remote Download
Z-World provides field programmability for its controllers. You
can create a downloadable program file by selecting the appro-
priate compiler option. The Z-World Download Manager
(DLM), resident in a controller, will receive your program,
place it in memory, and start it running. Remote downloading
requires a communications program such as ProComm that has
XMODEM transfer protocol available.

Run-Time Error Processing
Dynamic C’s standard error handler prints error messages to
the STDIO window. The standard error handler will not work
when your software is running stand-alone. You should provide
your own error handler:

void my_handler(uint code, uint address){

 my error processing code...
}
main(){
 ...
 ERROR_EXIT = my_handler;

 some statements...

 (*ERROR_EXIT)(code , addr);

 some statements...
}

A built-in Dynamic C symbol—ROM—is set to 1 if you are
compiling to an EPROM file. Use this variable to install your
own error handler conditionally:

#if ROM
 ERROR_EXIT = my_handler ;
#endif

Long Jumps
You can perform error recovery using Dynamic C’s setjmp and
longjmp functions. If you detect an error anywhere in your

...

.....

...

..

b

main

a c
...
.....
...
..

...

.....

...

..

Dynamic C TM

Z-World 530-757-3737 13

program, you can make a “long jump” to a safe location and
perform necessary recovery tasks. Usage typically involves
jumping from a deeply nested function back to your main pro-
gram.

The setjmp function marks a place in your code and saves the
stack pointer and important registers. The longjmp function
causes a return to the place marked by setjmp. The processor
stack is immediately “unwound” and a known state is restored.

This is how you do a long jump:
// probably in main()

 jmp_buf savreg; // make a save buffer
 ...
 if(setjmp(savreg)){
 code to recover from the error
 }
 ...

// then, somewhere, deeper in your code...
 if(big error) longjmp(savreg,1);

When longjmp executes, execution resumes immediately after
the call to setjmp and the value returned by the call to setjmp
is the same as the second argument passed to longjmp. This
value can be your error code as long as it is non-zero (setjmp
returns 0 when you call it directly.)

Watchdog Timer
Most Z-World controllers have a watchdog timer. Briefly
stated, a watchdog timer will reset your system after a certain
period (about 1.5 seconds, typically) if your software does not
reset the watchdog timer within that period. This safety feature
ensure that your program is functioning.

Protected Variables
Your program may need to recover protected variables at re-
start. However, if your program has never run before, your pro-
gram must initialize protected variables.

The function _prot_recover recovers protected variables; the
function _prot_init initializes them. The function
_sysIsSuperReset calls whichever of these functions is appro-
priate at startup (if you call _sysIsSuperReset).

Efficiency
There are a number of methods you can use to reduce the size
of your program, or to increase its speed.

Nodebug Keyword
Dynamic C places an RST 28H instruction in debug code at the
beginning of each C statement to provide locations for
breakpoints. These “jumps” to the debugger consume one byte
and about 25 clocks of execution time for each statement. Your
function will not have RST 28H instructions if you use the
nodebug keyword in the function declaration:

nodebug int myfunc(int x, int z){
 ...
}

Static Variables
Static variables are much more efficient on the Z180 than auto
variables. In Dynamic C, the default local storage class is

static, while most C compilers use auto. Use auto variables in
reentrant or recursive functions.

Execution Speed
Under Compiler Options, you can set a switch to optimize for
speed or for size. The default is size.

Subfunctions
Subfunctions, extensions in Dynamic C, allow often-used code
sequences to be turned into a “subroutine” within the scope of
a C function.

func(){
 int aname();
 subfunc aname: { k = inport (x); k + 4; }
 ...
 ... aname(); ...
 ...
 ... aname(); ...
...
}

The subfunction is prototyped as if it were a regular function. It
must be static and may not have any arguments. Variables used
within the subfunction must be available within the scope of
the parent C function. The actual code after the subfunc key-
word can appear anywhere in the enclosing function. You indi-
cate the return value, if any, by placing an expression followed
by a semicolon at the end of the subfunction body. This causes
the expression value to be loaded into the primary register (HL
or BCDE).

All subfunction calls take three bytes, low overhead compared
to some simple expressions. For example, the expression
*ptr++ can generate 14 bytes or more.

Substituting the following code:
static char nextbyte();
subfunc nextbyte: *ptr++;

nextbyte();
...
nextbyte();
...

can save ten or more bytes for each occurrence of nextbyte.
Subfunctions can also make a program easier to read and
understand, if you use descriptive names for obscure expres-
sions. The advantage of the subfunction over a regular function
is that it has access to all the variables within the program and
the calling overhead is low.

Subfunction calls cannot be nested.

New Features
Revision 5.0 of Dynamic C incorporated these features:

• Macros with Parameters

• Function Chaining (specifically including a
_GLOBAL_INIT function chain).

• Printing the contents of any window.

• C operators in constant expressions in assembly code.

• A hexadecimal memory dump command.

• Horizontal and vertical tiling options.

Dynamic C TM

Z-World 530-757-3737 14

• Toolbar.

• New COMPILE menu options. Specifically, targetless compi-
lation, and creation of downloadable code.

• Function “Assistant”

• Changes to the Codata structure

• New reset and initialization functions

Backward Compatibility
The #GLOBAL_INIT directive still works as it did in prior re-
leases of Dynamic C.

You can still “download to RAM.” It’s a compiler option. How-
ever, this capability is no longer being supported.

Software Libraries
These are the libraries included with Dynamic C. This list is
subject to change, as new products are introduced, and software
gets revised.
5KEY.LIB The basic “five-key” operator interface for the

PK2100 and PK2200 series controllers.

5KEYEXTD.LIB Extensions to the “five-key system.”

96IO.LIB Driver for the BL100’s DGL96 daughter board.

AASC.LIB Abstract Asynchronous Serial Communication.

AASCDIO.LIB STDIO-specific support for the AASC library.

AASCSCC.LIB SCC-specific support for the AASC library. (The
SCC is the Zilog 85C30 Serial Communication
Controller.)

AASCUART.LIB XP8700 support for the AASC library.

AASCZ0.LIB Z0-specific support for the AASC library. Z0 is the
Z180 serial port 0.

AASCZ1.LIB Z1-specific support for the AASC library. Z1 is the
Z180 serial port 1.

AASCZN.LIB ZNet-specific support for the AASC library.

BIOS.LIB Contains prototypes of functions and declarations
of variables defined in, and used by, the BIOS.

BL11XX.LIB Functions for the BL1100.

BL13XX.LIB Functions for the BL1300.

BL14_15.LIB Functions for the BL1400 and BL1500 series.

BL16XX.LIB Functions for the BL1600.

CIRCBUF.LIB Circular buffers functions (used by the AASC).

CM71_72.LIB Functions for the CM7100 and CM7200 series.

COM232.LIB Serial communication functions for the COM ports
on the Z104.

CPLC.LIB Functions for PK2100, PK2200, and BL1600.

DC.HH Definitions basic to Dynamic C.

DEFAULT.H Contains lists of #use directives for various
Z-World controllers. Dynamic C automatically se-
lects the list appropriate for your controller.

DMA.LIB Support functions for the Z180 on-chip DMA chan-
nels.

DRIVERS.LIB Drivers for some hardware devices.

EZIO.LIB Driver for a board-independent unified I/O space.

EZIOCMMN.LIB Common definitions for all EZIO libraries.

EZIOPBDV.LIB PLCBus support for the EZIO library.

EZIOPK23.LIB PK2300 function support for the EZIO library.

EZIOPLC.LIB PLCBus functions for boards that have native
PLCBus ports (BL1200, BL1600, PK2100, and
PK2200).

FK.LIB New “five-key” operator interface for the PK2100
and PK2200.

IOEXPAND.LIB Driver functions for BL1100 series daughter
boards.

KDM.LIB Driver for keyboard/display modules.

LCD2L.LIB LCD support for the PK2100 and PK2200.

MATH.LIB Useful mathematical functions.

MISC.LIB Miscellaneous KDM support.

MODEM232.LIB Modem functions for the PK2100 and PK2200.

NETWORK.LIB Opto22 9-bit binary protocol to support master-
slave networking.

PBUS_LG.LIB PLCBus support for the BL1100.

PBUS_TG.LIB PLCBus support for the Tiny Giant.

PK21XX.LIB PK2100 functions.

PK22XX.LIB PK2200 functions.

PLC_EXP.LIB PLCBus functions for boards that have native
PLCBus ports (BL1200, BL1600, PK2100, and
PK2200).

PRPORT.LIB Parallel port communication protocol between a
controller and a PC.

PWM.LIB Pulse width modulation functions.

RTK.LIB Real-time kernel.

S0232.LIB Serial communication driver for SIO port 0 on the
BL1100.

S1232.LIB Serial communication driver for SIO port 1 on the
BL1100.

SCC232.LIB Serial communication driver for the ports on
Zilog’s Serial Communication Controller.

SERIAL.LIB Serial communication functions for ports 0 and 1
of the Z180 and the SIO. Obsolete.

SRTK.LIB Simplified real-time kernel.

STDIO.LIB Functions relating to the STDIO window.

STRING.LIB (ANSI) functions for manipulating strings.

SYS.LIB General system functions.

TGIANT.LIB Functions for the Tiny Giant.

VDRIVER.LIB Virtual driver functions.

XMEM.LIB Function support for extended memory.

XP82XX.LIB Driver for the XP8200.

XP87XX.LIB Driver for the XP8700.

XP87XX2.LIB Driver for a second XP8700.

XP88XX.LIB Driver for the XP8800.

Z0232.LIB Serial communication driver for Z0. Z0 is the Z180
serial port 0.

Z104.LIB Functions for the Z104 (no longer available).

Z1232.LIB Serial communication driver for the Z180 serial
port 1.

ZNPAKFMT.LIB Lower level functions supporting the ZNet.

//

Dynamic C must be installed on a hard disk and requires about 4M of disk space. You
must be running in 386 enhanced mode, using Windows 3.1, Windows 95, or Windows
NT, on a machine having a 386SX processor or better. You must have at least 4M RAM
to run Dynamic C and one free serial port for communicating with your target controller.

